Journal of Organometallic Chemistry, 372 (1989) 465-471 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 09895

Synthesis and crystal structure of bis(triphenylphosphine)gold tricyanomethanide, $[(PPh_3)_2Au]^+ [C(CN)_3]^-$

T.V. Baukova, D.N. Kravtsov *

A.N. Nesmeyanov Institute of Organoelement Compounds, U.S.S.R. Academy of Sciences, Vavilov St., 28, Moscow 117813 (U.S.S.R.)

L.G. Kuz'mina, N.V. Dvortsova, M.A. Poray-Koshits

N.S. Kurnakov Institute of General and Inorganic Chemistry, U.S.S.R. Academy of Sciences, Leninsky Prospekt, 31, Moscow 117907 (U.S.S.R.)

E.G. Perevalova

Chemistry Department Moscow State University, Leninskie Gory, Moscow 117234 (U.S.S.R.) (Received February 23rd, 1989)

Abstract

A new unusual transformation of tetracyanoethylene (TCE) into a tricyanomethanide anion $[C(CN)_3]^-$ has been found. This transformation occurs as a result of action of tris(triphenylphosphinegold)oxonium tetrafluoroborate $[O(AuPPh_3)_3]^+BF_4^-$ on TCE or its donor-acceptor complexes with toluene and 2.4-dihydro-1.3-diphenylcyclopenta(b)indene, to give $[(PPh_3)_2Au]^+[C(CN)_3]^-$ (I). The X-ray diffraction study of I (20°C, $\lambda Mo-K_{\alpha}$, 1569 reflections, space group C2/c, Z = 4, R = 0.0296) has revealed that the cations $[Au(PPh_3)_2]^+$ occupy specific positions in the inversion centres and the anions $[C(CN)_3]^-$ are located on the '2' axes. No Au··· N interaction in I has been found. Complex I has been characterized by ¹H and ³¹P NMR and IR spectroscopy. The conductivity of I in CH₃OH-CH₃CN solutions has been measured.

Introduction

As has been previously reported ClAuPPh₃ does not react with TCE because of the reduced electron density at the gold atom bonded to the electronegative chlorine atom [1]. Interaction of TCE with $[O(AuPPh_3)_3]^+BF_4^-$ [2], in which the univalent atom of gold is bonded to the electron-deficient atom, has not as yet been studied.

An unusual transformation of TCE under the action of $[O(Au(PPh_3)]^+BF_4^-$ into $[(PPh_3)_2Au]^+[C(CN)_3]^-$ is described here. The reaction takes place with a noncoordinated TCE, as well as with the TCE participating in the formation of a weak

donor-accepting, charge transfer complex (TCE \cdot CH₃C₆H₅) (II) [3] or a stronglybonded complex with 2,4-dihydro-1,3-diphenylcyclopenta(b)indene [4] (III), which does not dissociate in solution.

We have performed conductivity and X-ray diffraction studies of I.

Results and Discussion

TCE and its donor-acceptor complexes II and III react with $[O(AuPPh_3)_3]^+ BF_4^$ in THF at room temperature to give I in 42-80% yields. In all cases AuCN is the second product of this reaction

The colourless crystals of complex I are soluble in polar solvents, and are stable up to 230 °C. Complex I is a strong electrolyte which dissociates completely in solution (CH₃OH-CH₃CN 1:1) at room temperature (at a concentration of $0.150-1.550 \cdot 10^{-3} \text{ mol} \cdot 1^{-1}$), as its conductivity does not depend on its concentration ($\lambda = 130 \pm 4 \text{ ohm} \cdot \text{cm}^2 \cdot \text{mol}^{-1}$).

Crystal structure

Table 1

The X-ray diffraction study of I has revealed that the $[Au(PPh_3)_2]^+$ cations are located in the inversion centres while the $[C(CN)_3]^-$ anions are located on the '2' axes. The tricyanomethanide anion is planar and the sum of the bond angles at the

Bond lengths (Å)				
Au-P	2.315(2)	C(10)-C(11)	1.40(3)	
P – C (1)	1.802(9)	C(11)-C(12)	1.37(2)	
P-C(7)	1.81(1)	C(12)-C(7)	1.35(2)	
P-C(13)	1.81(1)	C(13) - C(14)	1.38(1)	
C(1)-C(2)	1.48(3)	C(14)-C(15)	1.40(2)	
C(2)-C(3)	1.27(3)	C(15) - C(16)	1.27(7)	
C(3)-C(4)	1.37(2)	C(16) - C(17)	1.51(1)	
C(4)-C(5)	1.39(2)	C(17) - C(18)	1.32(2)	
C(5)-C(6)	1.37(2)	C(18) - C(13)	1.39(1)	
C(6)-C(1)	1.38(1)	N(1) - C(20)	1.04(2)	
C(7)-C(8)	1.47(2)	N(2) - C(21)	1.29(1)	
C(8)-C(9)	1.38(3)	C(19) - C(20)	1.33(4)	
C(9)-C(10)	1.23(4)	C(19)-C(21)	1.47(7)	

Fig. 1. The structures of the cation and the anion.

central carbon atom is equal to 360° . No Au \cdots N interaction was found in the crystal of I. The structures of the cation and anion are depicted in the Fig. 1, bond lengths and bond angles are given in the Tables 1 and 2.

The nature of the $[C(CN)_3]^-$ anion and the coordination of gold with nitrogen atom in cation I are of special interest.

In all the known tricyanomethanide structures [5-13] the N atom of anion $[C(CN_3)]^-$ is either coordinated with the metal atom or takes part in the hydrogen bond of the N \cdots H-N type (as in the case of NH⁺₄ as a counterion [7]).

The quantum-chemical calculation allows two possible structures for the $[C(CN_3)]^-$ anion with D_{3h} or C_{2v} symmetry, the first being somewhat more attractive [12]. Nevertheless both possibilities can be realized in the crystals of tricyanomethanides. The averaged geometrical parameters for the TCM anion in the various complexes as well as the symmetry type of anion in each structure are given in Table 3.

Owing to the low degree of experimental accuracy in determining the geometrical parameters of TCM anion in the structure I detailed discussions about them are not possible, however comparison of the results obtained with from the literature does allow some conclusions to be drawn in terms of the geometry of this anion. The type of symmetry realized by the $[C(CN)_3]^-$ anion is probably determined by the crystal field symmetry—in all cases where C_{2v} symmetry of the anion is realized, it is

PAuP	180	C(7)C(8)C(9)	115(2)	
AuPC(1)	110.4(3)	C(8)C(9)C(10)	127(3)	
AuPC(7)	114.4(4)	C(9)C(10)C(11)	118(2)	
AuPC(13)	113.6(4)	C(10)C(11)C(12)	120(2)	
C(1)PC(7)	106.2(6)	C(11)C(12)C(7)	122(2)	
C(1)PC(13)	106.7(5)	PC(13)C(14)	118.8(8)	
C(7)PC(13)	105.1(5)	PC(13)C(18)	121.8(8)	
PC(1)C(2)	121(2)	C(18)C(13)C(14)	119(1)	
PC(1)C(6)	124.8(7)	C(13)C(14)C(15)	118(1)	
C(6)C(1)C(2)	112(3)	C(14)C(15)C(16)	125(4)	
C(1)C(2)C(3)	121(1)	C(15)C(16)C(17)	117(4)	
C(2)C(3)C(4)	119(2)	C(16)C(17)C(18)	118(2)	
C(3)C(4)C(5)	120(1)	C(17)C(18)C(13)	122(1)	
C(4)C(5)C(6)	119(1)	C(20)C(19)C(21)	114(4)	
C(5)C(6)C(1)	122(1)	C(20)C(19)C(20)	133(8)	
PC(7)C(8)	119(1)	N(1)C(20)C(19)	166(4)	
PC(7)C(12)	125(1)	N(2)C(21)C(19)	180	
C(12)C(7)C(8)	116(2)			

located in the crystal at a specific position on the '2' axis. In most of the complexes the C-C bonds of the anion lie between 1.38-1.41 Å, only in the structure of Ag \cdot TCM) where the errors are rather high, is this bond much longer (1.48 Å) [6]. However, it is noteworthy that the Ag \cdot TCM is the only structure in which the nitrogen atoms of the TCM anion are bonded to the Ag atom by strong coordinate bonds thus giving a polymer framework.

It is clear that the averaged C-C bond lengths in the tricyanomethanide complexes (excluding Ag \cdot TCM) are shorter than the average $C(sp)-C(sp^2)$ in the TCNQ complexes (1.427 Å, 280 cases, between 1.420–1.433 [14]), but longer than the C(sp)-C(sp) bond lengths (1.183, 119 cases [14]). The C-N bond lengths in the tricyanomethanides are in the range 1.15–1.17 Å (1.13 Å in the Ag \cdot TCM structure) and are somewhat longer than the average 1.144 Å for the C-N bond in the TCNQ

Table 3

Complex Symmetry C-C C-N Reference (mean, Å) (mean, Å) Me₂TI TCM 1.38 1.17 5 C_{2v} Ag·TCM C_{2e} 1.48 1.13 6 7 $NH_4 \cdot TCM$ 1.40 1.15 D_{3k} 8 Na TCM D_{3h} 1.405 1.153 1.17 9 K-TCM 1.39 D_{3h} **K** · TCM 1.40 1.15 10 D_{3h} Cu (TCM) C_{2v} 1.41 1.15 11 Au(PPh₁)₂·TCM 1.40 1.15 This work C_{2v} Fer⁺·TCM 1.402 1.159 12 D_{3h} SnMe₃·TCM·H₂O 1.40 1.15 13 D_{3h}

The averaged geometrical parameters of the TCM anion in the various complexes and the type of symmetry in each structure

Table 2

Bond angles (°)

complexes (284 cases, between 1.139–1.149 Å [14]). These data suggest that while the multiplicity of the C-C bond is enhanced, the multiplicity of C-N bond is lowered in all the $[C(CN)_3]^-$ anions with the exception of the Ag⁺[C(CN)₃]⁻ complex.

In cation I, gold has strictly linear coordination. The Au-P bondlength is 2.315 Å. In other structures with the same cation [15–18], the Au-P bond length is in the range 2.30–2.34 Å.

Experimental

The IR spectrum of I was recorded with an UR-20 spectrometer in nujol, the ¹H NMR spectrum was recorded with a T-60 (60 MHz) instrument with TMS as an internal standard, and the ³¹P NMR spectra were recorded with a CFT-20 instrument. Conductivity was measured by use of a conductivity apparatus MM34-04 at a constant frequency of 1000 MHz in a cell with planar parallel platinum electrodes in absolute solvents (CH₃OH and CH₂CN).

Crystals of $[Au(PPh_3)_2]^+[C(CN)_3]^-$ are monoclinic, at 20°C a = 20.895(4), b = 8.822(2), c = 20.584(4) Å, $\beta = 111.09(2)^\circ$, Z = 4, space group C2/c, both the anion and cation occupy special positions; the anion on the second order axis and the cation in the centre of symmetry).

The unit cell parameters and intensities of 1569 reflections with $I > 2.5\sigma(I)$ were measured by use of an Enraf-Nonius CAD-4 four-circle diffractometer (λ Mo- K_{α} , graphite monochromator, $\omega/5/3\theta$ -scan, $2\theta \le 50^{\circ}$).

Absorption correction was applied using the curves of azimuthal scans. The crystal decomposes during the course of the measurements; by the end of the measurements the intensities of the standard reflections had fallen by 30%.

The structure was solved by the heavy atom technique and refined by the least squares technique first isotropically and then anisotropically. A continuous shifting of the atoms of the C-CN fragment, of the anion located on the second order axis, from their positions in the electron density syntheses was observed during the refinement. Thus further least squares refinement was carried out for the fixed x, y, z coordinates of this fragment. The H atom coordinates were calculated geometrically and their contribution was included in the last stages of the refinement. Final discrepancy factors were R = 0.0296, $R_w = 0.038$.

Atomic coordinates and their isotropic equivalent temperature parameters are listed in Table 4.

Reaction of TCE with $[O(AuPPh_3)_3]^+BF_4^-$

To a solution of 0.026 g (0.203 mmol) of TCE in 10 ml of absolute THF was added 0.100 g (0.067 mmol) of $[O(AuPPh_3)_3]^+ BF_4^-$. The mixture was stirred for 4 hours. The yellow precipitate that formed was isolated, washed with acetone, and dried to give 0.010 g (20% relative to Au) of AuCN, identified in the form of AuCN · PPh₃ (after treatment of AuCN with a solution of PPh₃ in chloroform) m.p. 202-203°C (lit. [19]: m.p. 203-204°C).

The combined organic solutions were evaporated to dryness. The solid residue was recrystallized from acetone by pentane, to give 0.07 g (80% relative to Au) of I, m.p. 231-232°C. Analysis. Found: C, 59.07; H, 3.42; N, 5.21; Au, 24.36; P, 7.43. $C_{41}H_{30}N_3P_2Au$ calc.: C, 59.26; H, 3.37; N, 5.18; Au, 24.30; P, 7.52%. IR spectrum

Atom	x	у	Z	B_{iso}^{eq}
Au	0	0	0	3.296(7)
Р	-1045(1)	1037(3)	- 84(1)	3.02(5)
N(1)	5556(7)	2269(21)	6863(7)	5.8(3)
N(2)	5000	-2161	7500	5
C(1)	-1326(4)	257(8)	580(4)	2.9(2)
C(2)	- 842(5)	41(40)	1258(5)	5.6(2)
C(3)	-1018(8)	-411(21)	1781(6)	6.4(5)
C(4)	- 1671(3)	-939(22)	1664(6)	5.7(3)
C(5)	-2156(7)	-918(23)	973(9)	6.3(4)
C(6)	- 1975(5)	-316(14)	456(5)	3.9(3)
C(7)	-1033(5)	3069(11)	27(6)	3.2(2)
C(8)	- 877(6)	4006(22)	- 487(5)	4.5(2)
C(9)	-841(8)	5557(23)	-342(9)	7.1(4)
C(10)	- 983(8)	6218(23)	115(9)	5.6(3)
C(11)	-1119(7)	5342(13)	611(7)	5.3(3)
C(12)	-1142(6)	3796(13)	553(6)	4.1(2)
C(13)	- 1723(5)	680(12)	-913(6)	3.5(2)
C(14)	-1653(6)	- 519(14)	-1322(6)	4.5(3)
casi	- 2210(10)	834(24)	-1940(7)	6.2(4)
C(16)	- 2779(6)	- 199(41)	-2147(6)	5.2(3)
C(17)	-2832(7)	1242(22)	-1731(7)	5.3(3)
C(18)	-2336(6)	1510(23)	-1139(7)	4.3(3)
C(19)	5000	547	7500	5
C(20)	5333(5)	1548(11)	7123(5)	2.9(2)
C(21)	5000	- 1050	7500	5

Table 4

Atomic coordinates ($\times 10^4$) and their isotropic equivalent temperature parameters (Å²)

(ν, cm⁻¹): 22015 w, 2205 w, 2168 w, 1607 m., 1332 w, 1100 m, 1030 w, 1000 w, 948 w, 850 w, 750 w, 715 m, 699 m, 525 m, 512 m, 500 m. ¹H NMR spectrum ((CD₃)₂CO, δ, ppm): 7.63 m aromatic protons. ³¹P NMR spectrum (CDCl₃, δ, ppm): -42.35 s.

Reaction of $(TCE \cdot CH_3C_6H_5)$ (II) with $[O(AuPPh_3)_3]^+BF_4^-$

A solution of 0.075 g (0.580 mmol) of TCE in 6 ml of absolute toluene was added to a suspension of 0.300 g (0.200 mmol) of $[O(AuPPh_3)_3]^+BF_4^-$ in 17 ml of absolute THF. The mixture was stirred for 4 hours. The residue was isolated from the solution, washed (4 × 1 ml) with acetone, and dried, to give 0.050 g (35% relative to Au) of AuCN, identified in the form of AuCN · PPh₃ as described above.

The solution obtained after washing of the AuCN precipitate was combined with the acetone extracts and was evaporated to dryness. 0.31 g of residue was dissolved in 3ml of acetone and diluted by petroleum ether to slight cloudiness. The yellow precipitate was isolated and washed with pentane, yield 0.06 g. IR spectroscopy and TLC (on Silufol in ether) indicate that this residue is a mixture of I and $(PPh_3)_2Au^+BF_4^-$ [20].

A new portion of petroleum ether was added to the mother liquor to cloudiness. The precipitated crystals were isolated, washed with pentane and dried in vacuo to give 0.21 g (42% relative to Au) of I, m.p. 231-232 °C.

To a solution of 0.20 g (0.046 mmol) of III in 7 ml of absolute THF was added 0.020 g (0.014 mmol) of $[O(AuPPh_3)_3]^+BF_4^-$ and stirred for 4 hours. The precipitate was isolated, washed with THF, and dried, to give 0.030 g (33% relative to Au) of AuCN, identified as described earlier, in the form of AuCN · PPh_3.

The combined THF extracts were evaporated to dryness. The residue was extracted with benzene. The benzene extracts were evaporated to dryness to give 0.010 g (100%) of 2.4-dihydro-1.3-diphenylcyclopenta(b)indene, m.p. $176-178^{\circ}C$ (from a mixture of C_6H_6 and C_2H_5OH) (lit. [4]: m.p. $176-178^{\circ}C$).

After the extraction with benzene the residue was recrystallized from an acetonehexane mixture, to give 0.020 g (59% relative to Au) of I was obtained, m.p. 231-232°C.

References

- 1 G.L. Mc.Clure and W.H. Baddley, J. Organomet. Chem., 27 (1971) 155.
- 2 E.G. Perevalova, K.I. Grandberg, D.A. Lemenovsky and V.P. Dyadchenko, Vestn. Mosk. Univ., Khim., 20 (1979) 299.
- 3 D.N. Dhar, Chem. Rev., 67 (1967) 611.
- 4 T.V. Baukova, E.G. Perevalova, D.N. Kravtsov: Koord. Khim., (1989) N5, in press.
- 5 Y.M. Chow, D. Britton, Acta Cryst., B31 (1975) 1934.
- 6 J. Konnet, D. Britton, Inorg. Chem., 5 (1966) 1193.
- 7 R. Desiderato, R.L. Sass, Acta Cryst., 18 (1965) 1.
- 8 P. Andersen. B. Klewe, E. Thom, Acta Chem. Scand., 21 (1967) 1530.
- 9 J.R. Witt, D. Britton, Acta Crystallogr., 1971, V. B27, N9, p. 1835.
- 10 P. Andersen, B. Klewe, Nature 200 (1963) 464.
- 11 M. Bonamico, L. Torell, A. Vaciago, C. Biondi, J. Chem. Soc., Chem. Commun., (1965) 191.
- 12 D.A. Dixon, J.C. Calobus, J.S. Miller, J. Am. Chem. Soc., 108 (1986) 2582.
- 13 D. Britton, Y.H. Chow, Acta Cryst., C39 (1983) 1539.
- 14 F.H. Allen, O. Kennard, D.G. Watson, L. Brammer, A.G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. II, (1987) S1.
- 15 N.C. Baenziger, K.M. Dittemore, J.R. Doyle, Inorg. Chem., 13 (1974) 805.
- 16 J.J. Guy, P.G. Jones, G.M. Sheldrick, Acta Crystallogr., B32 (1976) 1937.
- 17 J.A. Muir, M.M. Muir, E. Lorca, Acta Crystallogr., B36 (1980) 931.
- 18 M.K. Cooper, G.R. Dennis, K. Henrick, M. McPartlin, Inorg. Chim. Acta, 45 (1980) L 151.
- 19 A.N. Nesmeyanov, E.G. Perevalova, D.A. Lemenovsky, A.N. Kosina, K.I. Grandberg, Izv. Akad. Nauk SSSR, Ser. Khim., (1969) 2030.
- 20 K.I. Grandberg, T.V. Baukova, E.G. Perevalova, A.N. Nesmeyanov, Dokl. Akad Nauk SSSR, 206 (1972) 1355.